7 research outputs found

    Demand-driven air pollutant emissions for a fast-developing region in China

    Get PDF
    Guangdong is one of many fast-developing regions in China that are confronting the challenges of air pollution mitigation and sustainable economic development. Previous studies have focused on the characterization of production-based emissions to formulate control strategies, but the drivers of emission growth and pattern changes from the consumption side have rarely been explored. In this study, we used environmentally extended input-output analysis with well-established production-based emission inventories to develop a consumption-based emission inventory for seven pollutants in the years 2007 and 2012. The results showed that the demands of construction, transport and other services dominated the emissions from the consumption perspective, followed by electric power and some machinery and light industries. The varying trends of air pollutants from 2007 to 2012 were associated with production-based control measures and changes in economic structure and trading patterns. From the consumption perspective, due to the stringent control of SO2 in power plants and key industries, the SO2 emissions underwent substantial declines, while the less controlled PM10, PM2.5, VOC and CO emissions continued to grow. The contributions of the cleaner (that is, with lower emission intensity) service sectors (third-sector industries, excluding transport, storage and post) to all seven pollutants increased. This increase could be a consequence of the expansion of the service sector in Guangdong; in this five-year period, the service sector grew by 41% in terms of its contributions to Guangdong's gross domestic product. Meanwhile, exports accounted for more than half of the emissions, but their share had started to decrease for most pollutants except VOC and CO. The results suggest that Guangdong moved towards a cleaner production and consumption pathway. The transformation of the industrial structure and increase in of urban demand should help to further reduce emissions while maintaining economic development

    Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015

    Get PDF
    Guangdong Province (GD), one of the most prosperous and populous regions in China, still experiences haze events and growing ozone pollution in spite of the substantial air-quality improvement in recent years. Integrated control of fine particulate matter (PM2.5) and ozone in GD calls for a systematic review of historical emissions. In this study, emission trends, spatial variations, source-contribution variations, and reduction potentials of sulfur dioxide (SO2), nitrogen oxides (NO), PM2.5, inhalable particles (PM10), carbon monoxide (CO), ammonia (NH3), and volatile organic compounds (VOCs) in GD from 2006 to 2015 were first examined using a dynamic methodology, taking into account economic development, technology penetration, and emission controls. The relative change rates of anthropogenic emissions in GD during 2006-2015 are -48% for SO2, -0.5% for NO, -16% for PM2.5, -22% for PM10, 13% for CO, 3% for NH3, and 13% for VOCs. The declines of SO2, NO, PM2.5, and PM10 emissions in the whole province mainly resulted from the stringent emission control in the Pearl River delta (PRD) region, where most previous control measures were focused, especially on power plants (SO2 and NO), industrial combustion (SO2, PM2.5, PM10), on-road mobile sources (NO), and dust sources (PM2.5 and PM10). Emissions from other areas (non-PRD, NPRD), nevertheless, remain relatively stable due to the lax control measures and rapidly growing energy consumption. In addition, emission leaks of SO2 and NO from industries are observed from PRD to NPRD in 2010 and 2011. As a result, emissions in NPRD are increasingly important in GD, particularly those from industrial combustion. The contribution of NPRD to the total SO2 emissions in GD, for example, increased from 27% in 2006 to 48% in 2015. On-road mobile sources and solvent use are the two key sources that should receive more effective control measures in GD. Current control-driven emission reductions from on-road mobile sources are neutralized by the substantial growth of the vehicle population, while VOC emissions in GD steadily increase due to the growth of solvent use and the absence of effective control measures. Besides, future work could focus on power plants and industrial combustion in GD and industrial process sources in NPRD, which still have large emission reduction potentials. The historical emission inventory developed in this study not only helps to understand the emission evolution in GD, but also provides robust data to quantify the impact of emission and meteorology variations on air quality and unveil the primary cause of significant air-quality change in GD in the recent decade
    corecore